大功率電源中MOSFET功率計(jì)算

大功率電源中MOSFET功率計(jì)算

計(jì)算功率耗散
??????? 要確定一個(gè)MOSFET 場(chǎng)效應(yīng)管是否適于某一特定應(yīng)用,需要對(duì)其功率耗散進(jìn)行計(jì)算。耗散主要包括阻抗耗散和開(kāi)關(guān)耗散:PDDEVICETOTAL=PDRESISTIVE+PDSWITCHING。
由于MOSFET 的功率耗散很大程度上取決于其導(dǎo)通電阻(RDS(ON)),計(jì)算RDS(ON)看似是一個(gè)很好的著手之處。但MOSFET 的導(dǎo)通電阻取決于結(jié)溫TJ。返過(guò)來(lái),TJ又取決于MOSFET 中的功率放大器耗散和MOSFET 的熱阻(ΘJA)。這樣,很難確定空間從何處著手。由于在功率耗散計(jì)算中的幾個(gè)條件相互依賴,確定其數(shù)值時(shí)需要迭代過(guò)程(圖1)。

大功率電源中MOSFET功率計(jì)算

這一過(guò)程從首先假設(shè)各MOSFET 的結(jié)溫開(kāi)始,同樣的過(guò)程對(duì)于每個(gè)MOSFET 單獨(dú)進(jìn)行。MOSFET 的功率耗散和允許的環(huán)境溫度都要計(jì)算。
當(dāng)允許的周圍溫度達(dá)到或略高于電源封裝內(nèi)和其供電的電路所期望的最高溫度時(shí)結(jié)束。使計(jì)算的環(huán)境溫度盡可能高看似很誘人,但這通常不是一個(gè)好主意。這樣做將需要更昂貴的MOSFET 、在MOSFET 下面更多地使用銅片,或者通過(guò)更大或更快的風(fēng)扇使空氣流動(dòng)。所有這些都沒(méi)有任何保證。
在某種意義上,這一方案蒙受了一些“回退”。畢竟,環(huán)境溫度決定MOSFET 的結(jié)溫,而不是其他途徑。但從假設(shè)結(jié)溫開(kāi)始所需要的計(jì)算,比從假設(shè)環(huán)境溫度開(kāi)始更易于實(shí)現(xiàn)。
對(duì)于開(kāi)關(guān)MOSFET 和同步整流器兩者,都是選擇作為此迭代過(guò)程開(kāi)始點(diǎn)的最大允許裸片結(jié)溫(TJ(HOT))。大多數(shù)MOSFET 數(shù)據(jù)參數(shù)頁(yè)只給出25°C的最大RDS(ON),,但近來(lái)有一些也提供了125°C的最大值。MOSFET RDS(ON)隨著溫度而提高,通常溫度系數(shù)在0.35%/°C至0.5%/°C的范圍內(nèi)(圖2)。如果對(duì)此有所懷疑,可以采用更悲觀的溫度系數(shù)和MOSFET 在25°C規(guī)格參數(shù)(或125°C的規(guī)格參數(shù),如果有提供的話)計(jì)算所選擇的TJ(HOT)處的最大RDS(ON):RDS(ON)HOT=RDS(ON)SPEC×[1+0.005×(TJ(HOT)?TSPEC)]
其中,RDS(ON)SPEC為用于計(jì)算的MOSFET 導(dǎo)通電阻,而TSPEC為得到RDS(ON)SPEC的溫度。如下描述,用計(jì)算得到的RDS(ON)HOT確定MOSFET 和同步整流器的功率耗散。討論計(jì)算各MOSFET 在假定裸片溫度的功率耗散的段落之后,是對(duì)完成此迭代過(guò)程所需其他步驟的描述。

大功率電源中MOSFET功率計(jì)算

同步整流器的耗散對(duì)于除最大負(fù)載外的所有負(fù)載,在開(kāi)、關(guān)過(guò)程中,同步整流器的MOSFET 的漏源電壓通過(guò)捕獲二極管箝制。因此,同步整流器沒(méi)有引致開(kāi)關(guān)損耗,使其功率耗散易于計(jì)算。需要考慮只是電阻耗散。
最壞情況下?lián)p耗發(fā)生在同步整流器負(fù)載系數(shù)最大的情況下,即在輸入電壓為最大值時(shí)。通過(guò)使用同步整流器的RDS(ON)HOT和負(fù)載系數(shù)以及歐姆定律,就可以計(jì)算出功率耗散的近似值:
PDSYNCHRONOUSRECTIFIER=[ILOAD2×RDS(ON)HOT]×[1>-(VOUT/VIN(MAX))]

開(kāi)關(guān)MOSFET 的耗散
??????? 開(kāi)關(guān)MOSFET 電阻損耗的計(jì)算與同步整流器的計(jì)算相仿,采用其(不同的)負(fù)載系數(shù)和RDS(ON)HOT:
PDRESISTIVE=[ILOAD2×RDS(ON)HOT]×(VOUT/VIN)
由于它依賴于許多難以定量且通常不在規(guī)格參數(shù)范圍、對(duì)開(kāi)關(guān)產(chǎn)生影響的因素,開(kāi)關(guān)MOSFET 的開(kāi)關(guān)損耗計(jì)算較為困難。在下面的公式中采用粗略的近似值作為評(píng)估一個(gè)MOSFET 的第一步,并在以后在實(shí)驗(yàn)室內(nèi)對(duì)其性能進(jìn)行驗(yàn)證:
PDSWITCHING=(CRSS×VIN2×fSW×ILOAD)/IGATE
其中CRSS為MOSFET 的反向轉(zhuǎn)換電容(一個(gè)性能參數(shù)),fSW為開(kāi)關(guān)頻率,而IGATE為MOSFET 的啟動(dòng)閾值處(柵極充電曲線平直部分的VGS)的MOSFET 柵極驅(qū)動(dòng)的吸收電流和的源極電流。
一旦根據(jù)成本(MOSFET 的成本是它所屬于那一代產(chǎn)品的非常重要的功能)將選擇范圍縮小到特定的某一代MOSFET ,那一代產(chǎn)品中功率耗散最小的就是具有相等電阻損耗和開(kāi)關(guān)損耗的型號(hào)。若采用更小(更快)的器件,則電阻損耗的增加幅度大于開(kāi)關(guān)損耗的減小幅度;而采用更大(RDS(ON)低)的器件中,則開(kāi)關(guān)損耗的增加幅度大于電阻損耗的減小幅度。
如果VIN是變化的,必須同時(shí)計(jì)算在VIN(MAX)和VIN(MIN)處的開(kāi)關(guān)MOSFET 的功率耗散。MOSFET 最壞情況下功率耗散將出現(xiàn)在最小或最大輸入電壓處。耗散為兩個(gè)函數(shù)的和:在VIN(MIN)(較高的負(fù)載系數(shù))處達(dá)到最大的電阻耗散,和在VIN(MAX)(由于VIN2的影響)處達(dá)到最大的開(kāi)關(guān)耗散。最理想的選擇略等于在VIN極值的耗散,它平衡了VIN范圍內(nèi)的電阻耗散和開(kāi)關(guān)耗散。
如果在VIN(MIN)處的耗散明顯較高,電阻損耗為主。在這種情況下,可以考慮采用較大的開(kāi)關(guān)MOSFET ,或并聯(lián)多個(gè)以達(dá)到較低的RDS(ON)值。但如果在VIN(MAX)處的耗散明顯較高,則可以考慮減小開(kāi)關(guān)MOSFET 的尺寸(如果采用多個(gè)器件,或者可以去掉MOSFET 以使其可以更快地開(kāi)關(guān)。

如果所述電阻和開(kāi)關(guān)損耗平衡但還是太高,有幾個(gè)處理方式:
??????? 改變題目設(shè)定。例如,重新設(shè)定輸入電壓范圍;改變開(kāi)關(guān)頻率,可以降低開(kāi)關(guān)損耗,且可能使更大、更低的RDS(ON)值的開(kāi)關(guān)MOSFET 成為可能;增大柵極驅(qū)動(dòng)電流,降低開(kāi)關(guān)損耗。MOSFET 自身最終限制了柵極驅(qū)動(dòng)電流的內(nèi)部柵極電阻,實(shí)際上局限了這一方案;采用可以更快同時(shí)開(kāi)關(guān)并具有更低RDS(ON)值和更低的柵極電阻的改進(jìn)的MOSFET
由于元器件選擇數(shù)量范圍所限,超出某一特定點(diǎn)對(duì)MOSFET 尺寸進(jìn)行精確調(diào)整也許不太可能,其底線在于MOSFET 在最壞情況下的功率必須得以耗散。

熱阻
??????? 再參考圖1說(shuō)明,確定是否正確選擇了用于同步整流器和開(kāi)關(guān)MOSFET 的MOSFET 迭代過(guò)程的下一個(gè)步驟。這一步驟計(jì)算每個(gè)MOSFET 的環(huán)境空氣溫度,它可能導(dǎo)致達(dá)到假設(shè)的MOSFET 結(jié)溫。為此,首先要確定每個(gè)MOSFET 的結(jié)與環(huán)境間的熱阻(ΘJA)。
如果多個(gè)MOSFET 并聯(lián)使用,可以通過(guò)與計(jì)算兩個(gè)或更多關(guān)聯(lián)電阻的等效電阻相同的方法,計(jì)算其組合熱阻。熱阻也許難以估計(jì),但測(cè)量在一簡(jiǎn)單PC板上的單一器件的ΘJA就相當(dāng)容易,系統(tǒng)內(nèi)實(shí)際電源的熱性能難以預(yù)計(jì),許多熱源在競(jìng)爭(zhēng)有限的散熱通道。
讓我們從MOSFET 的ΘJA開(kāi)始。對(duì)于單芯片SO-8MOSFET 封裝,ΘJA通常在62°C/W附近。對(duì)于其他封裝,帶有散熱柵格或暴露的散熱條,ΘJA可能在40°C/W和50°C/W之間(參見(jiàn)表)。計(jì)算多高的環(huán)境溫度將引起裸片達(dá)到假設(shè)的TJ(HOT):
TAMBIENT=TJ(HOT)-TJ(RISE)
如果計(jì)算的TAMBIENT比封裝最大標(biāo)稱環(huán)境溫度低(意味著封裝的最大標(biāo)稱環(huán)境溫度將導(dǎo)致超過(guò)假設(shè)的MOSFET TJ(HOT)),就要采取以下一種或所有措施:
提高假設(shè)的TJ(HOT)(HOT,但不要超過(guò)數(shù)據(jù)參數(shù)頁(yè)給出的最大值;通過(guò)選擇更合適的MOSFET ,降低MOSFET 功率耗散;或者,通過(guò)加大空氣流動(dòng)或MOSFET 周圍的銅散熱片面積降低ΘJA。

大功率電源中MOSFET功率計(jì)算

然后重新計(jì)算。采用電子數(shù)據(jù)表以簡(jiǎn)化確定可接受的設(shè)計(jì)所要求的典型的多重疊代。另一方面,如果計(jì)算的比封裝最大標(biāo)稱環(huán)境溫度高得多,就要采取以下一種或所有措施:
降低假設(shè)的TJ(HOT);減少用于MOSFET 功率耗散的銅散熱片面積;或者,采用不那么昂貴的MOSFET 。
這些步驟是可選的,因?yàn)楸景咐蠱OSFET 不會(huì)由于超過(guò)設(shè)定溫度而損壞。然而,在TAMBIENT比封裝的最大溫度高時(shí),這些步驟可以減小板面積和成本。
該過(guò)程中最大的不準(zhǔn)確性來(lái)源于ΘJA。仔細(xì)研讀ΘJA規(guī)格參數(shù)相關(guān)的數(shù)據(jù)頁(yè)說(shuō)明。典型的規(guī)格說(shuō)明假設(shè)器件安裝于1平方英寸的2盎司銅片。銅片承擔(dān)了大部分的散熱,而銅片的大小對(duì)ΘJA有顯著影響。
例如,采用1平方英寸的銅片,D-Pak的ΘJAD-Pak可能是50°C/W。但如果銅片就設(shè)在封裝引腳下,ΘJA值將會(huì)加倍(參見(jiàn)表)。采用多個(gè)并聯(lián)MOSFET ,ΘJA主要依賴于它所安裝的銅片面積。兩個(gè)元器件的等效ΘJA可能是只有一個(gè)元器件時(shí)的一半,除非銅片的面積加倍。就是說(shuō),增加并聯(lián)MOSFET 而不同時(shí)增加銅片面積,將使RDS(ON)減半,但對(duì)ΘJA的改變小得多。
最后,ΘJA的規(guī)格參數(shù)假設(shè)銅片散熱面積不需考慮其他元器件的散熱。在高電流時(shí),在功率路徑上的每個(gè)元件,甚至是PC板上的銅材料都會(huì)產(chǎn)生熱量。為避免對(duì)的MOSFET(上海諾易電器)過(guò)度加熱,需要仔細(xì)計(jì)估算實(shí)際物理環(huán)境能達(dá)到的ΘJA值;研究所選擇的MOSFET 提供的熱參數(shù)信息;檢查是否有空間用于增加額外的銅片、散熱器和其他器件;確定增加空氣流動(dòng)是否可行;看看在假設(shè)的散熱通道有沒(méi)有其他明顯的熱源,并要估算一下附近元件和空間的加熱或冷卻作用。

設(shè)計(jì)實(shí)例
??????? 圖3所示CPU內(nèi)核電源在40A提供1.3V。兩個(gè)同樣的20A電源在300kHz運(yùn)行,提供40A輸出電源。MAX1718主控制器驅(qū)動(dòng)一個(gè),而MAX1897從控制器驅(qū)動(dòng)另一個(gè)。該電源輸入范圍在8~20V之間,指定封裝的最高工組作環(huán)境溫度60°C。
同步整流器包括兩個(gè)并聯(lián)的IRF7822MOSFET ,在室溫條件下組合的最大RDS(ON)為3.25mΩ,而假設(shè)TJ(HOT)為115°C時(shí)約為4.7mΩ。最大負(fù)載系數(shù)94%,20A負(fù)載電流和4.7mΩ最大RDS(ON),并聯(lián)MOSFET 的耗散約為1.8W。提供2平方英寸的銅片以進(jìn)行散熱,總ΘJA約為31°C/W。組合MOSFET 的溫度上升約為55°C,所以此設(shè)計(jì)將在60°左右的環(huán)境溫度工作。
在室溫下組合的最大RDS(ON)為6mΩ,在115°C(假設(shè)的TJ(HOT))為8.7mΩ的兩個(gè)并聯(lián)IRF7811WMOSFET 組成開(kāi)關(guān)MOSFET?。組合CRSS為240pF。MAX1718以及MAX1897的1Ω柵極驅(qū)動(dòng)輸出約為2A.。當(dāng)VIN=8V時(shí),電阻損耗為0.57W,而開(kāi)關(guān)損耗約為0.05W。在20V時(shí),電阻損耗為0.23W,而開(kāi)關(guān)損耗約為0.29W。在每個(gè)操作點(diǎn)的總損耗大體平衡,而在最小VIN處的最壞情況下,等于0.61W。

由于功率耗散水平不高,我們可以在這對(duì)MOSFET 下面提供了0.5平方英寸的銅片,達(dá)到約55°C/W的總ΘJA。這樣以35°C的升溫,可以支持達(dá)80°C的環(huán)境溫度。
本實(shí)例的銅散熱片僅要求對(duì)MOSFET 提供。如果有其它器件散熱,也許要求銅散熱片面積更大。如果空間不允許增加額外的銅散熱片,可以減小總功率耗散,將熱量擴(kuò)散到散熱量較低的地方,或采用其他方法散熱。
熱能管理是大功率便攜設(shè)計(jì)中最困難的方面之一,它使上述的迭代過(guò)程成為必需。雖然這一過(guò)程使板設(shè)計(jì)者已經(jīng)接近于最終設(shè)計(jì),但還是必須通過(guò)實(shí)驗(yàn)室工作最終確定設(shè)計(jì)過(guò)程是否準(zhǔn)確。在實(shí)驗(yàn)室中計(jì)算MOSFET 的熱能特性、確何其散熱通道并檢查計(jì)算結(jié)果,有助于確保可靠的熱設(shè)計(jì)

avatar

發(fā)表評(píng)論

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: